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Abstract

Weak supervision has shown promising results
in many natural language processing tasks,
such as Named Entity Recognition (NER). Ex-
isting work mainly focuses on learning deep
NER models only with weak supervision, i.e.,
without any human annotation, and shows that
by merely using weakly labeled data, one can
achieve good performance, though still under-
performs fully supervised NER with manu-
ally/strongly labeled data. In this paper, we
consider a more practical scenario, where we
have both a small amount of strongly labeled
data and a large amount of weakly labeled
data. Unfortunately, we observe that weakly
labeled data does not necessarily improve, or
even deteriorate the model performance (due
to the extensive noise in the weak labels) when
we train deep NER models over a simple or
weighted combination of the strongly labeled
and weakly labeled data. To address this is-
sue, we propose a new multi-stage computa-
tional framework – NEEDLE with three essen-
tial ingredients: (1) weak label completion, (2)
noise-aware loss function, and (3) final fine-
tuning over the strongly labeled data. Through
experiments on E-commerce query NER and
Biomedical NER, we demonstrate that NEE-
DLE can effectively suppress the noise of the
weak labels and outperforms existing methods.
In particular, we achieve new SOTA F1-scores
on 3 Biomedical NER datasets: BC5CDR-
chem 93.74, BC5CDR-disease 90.69, NCBI-
disease 92.28. 1

1 Introduction

Named Entity Recognition (NER) is the task of
detecting mentions of real-world entities from text
and classifying them into predefined types. For
example, the task of E-commerce query NER is

∗ Work was done during internship at Amazon.
1Open-source code: https://github.com/amzn/

amazon-weak-ner-needle

to identify the product types, brands, product at-
tributes of a given query. Traditional deep learning
approaches mainly train the model from scratch
(Ma and Hovy, 2016; Huang et al., 2015), and
rely on large amounts of labeled training data. As
NER tasks require token-level labels, annotating a
large number of documents can be expensive, time-
consuming, and prone to human errors. Therefore,
the labeled NER data is often limited in many do-
mains (Leaman and Gonzalez, 2008). This has
become one of the biggest bottlenecks that pre-
vent deep learning models from being adopted in
domain-specific NER tasks.

To achieve better performance with limited la-
beled data, researchers resort to large unlabeled
data. For example, Devlin et al. (2019) propose to
pre-train the model using masked language mod-
eling on large unlabeled open-domain data, which
is usually hundreds/thousands of times larger than
the manually/strongly labeled data. However, open-
domain pre-trained models can only provide lim-
ited semantic and syntax information for domain-
specific tasks. To further capture domain-specific
information, Lee et al. (2020); Gururangan et al.
(2020) propose to continually pre-train the model
on large in-domain unlabeled data.

When there is no labeled data, one approach is
to use weak supervision to generate labels automat-
ically from domain knowledge bases (Shang et al.,
2018; Liang et al., 2020). For example, Shang
et al. (2018) match spans of unlabeled Biomedical
documents to a Biomedical dictionary to generate
weakly labeled data. Shang et al. (2018) further
show that by merely using weakly labeled data, one
can achieve good performance in biomedical NER
tasks, though still underperforms supervised NER
models with manually labeled data. Throughout
the rest of the paper, we refer to the manually la-
beled data as strongly labeled data for notational
convenience.
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While in practice, we often can access both a
small amount of strongly labeled data and a large
amount of weakly labeled data, generated from
large scale unlabeled data and domain knowledge
bases. A natural question arises here:

“Can we simultaneously leverage small strongly
and large weakly labeled data to improve the

model performance?”

The answer is yes, but the prerequisite is that you
can properly suppress the extensive labeling noise
in the weak labels. The weak labels have three
features: 1) “incompleteness”: some entity men-
tions may not be assigned with weak labels due
to the limited coverage of the knowledge base; 2)
“labeling bias”: some entity mentions may not be
labeled with the correct types, and thus weak labels
are often noisy; 3) “ultra-large scale”: the weakly
labeled data can be hundreds/thousands of times
larger than the strongly labeled data.

An ultra-large volume of weakly labeled data
contains useful domain knowledge. But it also
comes with enormous noise due to the “incom-
pleteness” and “labeling bias” of weak labels. The
enormous noise can dominate the signal in the
strongly and weakly labeled data, especially when
combined with the unsupervised pre-training tech-
niques. Such noise can be easily overfitted by the
huge neural language models, and may even de-
teriorate the model performance. This is further
corroborated by our empirical observation (See Sec-
tion 4) that when we train deep NER models over
a simple or weighted combination of the strongly
labeled and weakly labeled data, the model perfor-
mance almost always becomes worse.

To address such an issue, we propose a three-
stage computational framework named NEEDLE
(Noise-aware wEakly supErviseD continuaL prE-
training). At Stage I, we adapt an open-domain
pre-trained language model to the target domain
by in-domain continual pre-training on the large
in-domain unlabeled data. At Stage II, we use the
knowledge bases to convert the in-domain unla-
beled data to the weakly labeled data. We then
conduct another continual pre-training over both
the weakly and strongly labeled data, in conjunc-
tion with our proposed weak label completion pro-
cedure and noise-aware loss functions, which can
effectively handle the“incompleteness” and “noisy
labeling” of the weak labels. At Stage III, we fine-
tune the model on the strongly labeled data again.
The last fine-tuning stage is essential to the model

fitting to the strongly labeled data.

We summarize our key contributions as follows:

•We identify an important research question on
weak supervision: while training deep NER mod-
els using a simple or weighted combination of
the strongly labeled and weakly labeled data, the
ultra-large scale of the weakly labeled data aggra-
vates the extensive noise in the weakly labeled data
and can significantly deteriorate the model perfor-
mance.

•We propose a three-stage computational frame-
work named NEEDLE to better harness the ultra-
large weakly labeled data’s power. Our experi-
mental results show that NEEDLE significantly im-
proves the model performance on the E-commerce
query NER tasks and Biomedical NER tasks. In
particular, we achieve new SOTA F1-scores on 3
Biomedical NER datasets: BC5CDR-chem 93.74,
BC5CDR-disease 90.69, NCBI-disease 92.28. We
also extend the proposed framework to the multi-
lingual setting.

2 Preliminaries

We briefly introduce the NER problem and the
unsupervised language model pre-training.

2.1 Named Entity Recognition

NER is the process of locating and classifying
named entities in text into predefined entity cat-
egories, such as products, brands, diseases, chem-
icals. Formally, given a sentence with N tokens
X = [x1, ..., xN ], an entity is a span of tokens
s = [xi, ..., xj ] (0 ≤ i ≤ j ≤ N) associated
with an entity type. Based on the BIO schema (Li
et al., 2012), NER is typically formulated as a se-
quence labeling task of assigning a sequence of
labels Y = [y1, ..., yN ] to the sentence X . Specifi-
cally, the first token of an entity mention with type
X is labeled as B-X; the other tokens inside that en-
tity mention are labeled as I-X; and the non-entity
tokens are labeled as O.

Supervised NER. We are given M sentences that
are already annotated at token level, denoted as
{(Xm,Ym)}Mm=1. Let f(X; θ) denote an NER
model, which can compute the probability for pre-
dicting the entity labels of any new sentence X ,
where θ is the parameter of the NER model. We
train such a model by minimizing the following



loss over {(Xm,Ym)}Mm=1:

θ̂ = argmin
θ

1

M

M∑
m=1

`(Ym, f(Xm; θ)), (1)

where `(·, ·) is the cross-entropy loss for token-
wise classification model or negative likelihood for
CRF model (Lafferty et al., 2001).
Weakly Supervised NER. Previous studies
(Shang et al., 2018; Liang et al., 2020) of weakly
supervised NER consider the setting that no strong
label is available for training, but only weak la-
bels generated by matching unlabeled sentences
with external gazetteers or knowledge bases. The
matching can be achieved by string matching (Gian-
nakopoulos et al., 2017), regular expressions (Fries
et al., 2017) or heuristic rules (e.g., POS tag con-
straints). Accordingly, they learn an NER model
by minimizing Eq. (1) with {Ym}Mm=1 replaced by
their weakly labeled counterparts.

2.2 Unsupervised Pre-training

One of the most popular approaches to leverage
large unlabeled data is unsupervised pre-training
via masked language modeling. Pre-trained lan-
guage models, such as BERT and its variants
(e.g., RoBERTa Liu et al. (2019), ALBERT Lan
et al. (2020b) and T5 Raffel et al. (2019)), have
achieved state-of-the-art performance in many nat-
ural language understanding tasks. These models
are essentially massive neural networks based on
bi-directional transformer architectures, and are
trained using a tremendous amount of open-domain
data. For example, the popular BERT-base model
contains 110 million parameters, and is trained
using the BooksCorpus (Zhu et al., 2015) (800
million words) and English Wikipedia (2500 mil-
lion words). However, these open-domain data
can only provide limited semantic and syntax infor-
mation for domain-specific tasks. To further cap-
ture domain-specific knowledge, Lee et al. (2020);
Gururangan et al. (2020) propose to continually
pre-train the model over large in-domain unlabeled
data.

3 Method

To harness the power of weakly labeled data, we
propose a new framework — NEEDLE, which con-
tain stages as illustrated in Figure 1:
1) We first adapt an open-domain pre-trained lan-
guage model to the downstream domain via MLM

continual pre-training on the unlabeled in-domain
data.
2) We use the knowledge bases to convert the unla-
beled data to the weakly labeled data through weak
supervision. Then we apply noise-aware continual
pre-training for learning task-specific knowledge
from both strongly and weakly labeled data;
3) Lastly, we fine-tune the model on the strongly
labeled data again.

3.1 Stage I: Domain Continual Pre-training
over Unlabeled Data

Following previous work on domain-specific BERT
(Gururangan et al., 2020; Lee et al., 2020), we
first conduct domain continual masked language
model pre-training on the large in-domain unla-
beled data {X̃m}M̃m=1. Note that the masked lan-
guage model fLM(·; θenc, θLM) contains encoder
parameters θenc and classification head parameters
θLM, which are initialized from open-domain pre-
trained masked language models (e.g., BERT and
RoBERTa).

3.2 Stage II: Noise-Aware Continual
Pre-training over both Strongly and
Weakly labeled Data

In the second stage, we use the knowledge bases
to convert the unlabeled data to weakly labeled
data to generate weak labels for the unlabeled data:
{(X̃m, Ỹ

w
m )}M̃m=1. We then continually pre-train

the model with both weakly labeled in-domain data
and strongly labeled data. Specifically, we first re-
place the MLM head by a CRF classification head
(Lafferty et al., 2001) and conduct noise-aware
weakly supervised learning, which contains two
ingredients: weak label completion procedure and
noise-aware loss function.
• Weak Label Completion. As the weakly la-
beled data suffer from severe missing entity is-
sue, we propose a weak label completion proce-
dure. Specifically, we first train an initial NER
model f(; θInit) by optimizing Eq (1) with θInit =
(θenc, θCRF), where the encoder θenc is initialized
from Stage I and NER CRF head θCRF is ran-
domly initialized. Then, for a given sentence
X̃ = [x1, ..., xN ] with the original weak labels
Ỹ w = [yw1 , ..., y

w
N ] and the predictions from the ini-

tial model Ỹ p = argminY `(Y , f(X̃; θInit)) =
[yw1 , ..., y

w
N ], we generate the corrected weak labels
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Figure 1: Three-stage NEEDLE Framework.

Ỹ c = [yc1, ..., y
c
N ] by:

yci =

{
ypi if ywi = O (non-entity)
ywi otherwise

(2)

Such a weak label completion procedure can
remedy the incompleteness of weak labels.
• Noise-Aware Loss Function. The model tends
to overfit the noise of weak labels when using neg-
ative log-likelihood loss over the weakly labeled
data, Eq (1). To alleviate this issue, we propose a
noise-aware loss function based on the estimated
confidence of the corrected weak labels Ỹc, which
is defined as the estimated probability of Ỹc being
the true labels Ỹ: P̂ (Ỹc = Ỹ|X̃). The confi-
dence can be estimated by the model prediction
score f(X̃; θ) and histogram binning (Zadrozny
and Elkan, 2001). See more details in Appendix A.

We design the noise-aware loss function to
make the fitting to the weak labels more con-
servative/aggressive, when the confidence is
lower/higher. Specifically, when Ỹ c = Ỹ , we
let loss function L be the negative log-likelihood,
i.e., L(·, ·|Ỹ c = Ỹ ) = `(·, ·); when Ỹ c 6= Ỹ ,
we let L be the negative log-unlikelihood, i.e.,
L(·, ·|Ỹ c 6= Ỹ ) = `−(·, ·) 2. Accordingly, the
noise-aware loss function is designed as

`NA(Ỹ
c, f(X̃; θ))

= E
Ỹm=Ỹ c

m|X̃m
L(Ỹ c

m, f(X̃m; θ),1(Ỹm = Ỹ c
m))

= P̂ (Ỹ c = Ỹ |X̃)`(Ỹ c, f(X̃; θ))+

P̂ (Ỹ c 6= Ỹ |X̃)`−(Ỹ c, f(X̃; θ)), (3)

where the log-unlikelihood loss can be viewed as
regularization and the confidence of weak labels

2 `(Y , f(X; θ)) = − logPf(X;θ)(Y )
`−(Y , f(X; θ)) = − log [1− Pf(X;θ)(Y )]

can be viewed as an adaptive weight. The training
objective on both the strongly labeled data and
weakly labeled data is:

min
θ

1

M + M̃
[
M∑
m=1

`(Ym, f(Xm; θ))

+
M̃∑
m=1

`NA(Ỹ
c
m, f(X̃m; θ))], (4)

3.3 Stage III: Final Fine-tuning

Stages I and II of our proposed framework mainly
focus on preventing the model from the overfitting
to the noise of weak labels. Meanwhile, they also
suppress the model fitting to the strongly labeled
data. To address this issue, we propose to fine-tune
the model on the strongly labeled data again. Our
experiments show that such additional fine-tuning
is essential.

4 Experiments

We use transformer-based open-domain pretrained
models, e.g., BERT, mBERT, RoBERTa-Large,
(Devlin et al., 2019; Liu et al., 2019) with a CRF
layer as our base NER models. Throughout the
experiments, we use the BIO tagging scheme (Car-
penter, 2009). For Stages I and II, we train the mod-
els for one epoch with batch size 144. For Stage
III, we use the grid search to find optimal hyper-
parameters: We search the number of epochs in
[1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 50] and batch size
in [64, 144, 192]. We use ADAM optimizer with
a learning rate of 5 × 10−5 on the E-commerce
query NER dataset. In the Biomedical NER ex-
periments, we search the optimal learning rate in
[1 × 10−5, 2 × 10−5, 5 × 10−5]. All implementa-
tions are based on transformers (Wolf et al., 2019).



We use an Amazon EC2 virtual machine with 8
NVIDIA V100 GPUs.

Dataset
Number of Samples Weak Label
Train Dev Test Weak Precision Recall
E-commerce Query Domain

En 187K 23K 23K 22M 84.62 49.52
E-commerce Query Domain (Multilingual)

Mul-En 257K 14K 14K
Mul-Fr 79K 4K 4K
Mul-It 52K 3K 3K 17M 84.62 49.52

Mul-De 99K 5K 5K
Mul-Es 64K 4K 4K

Biomedical Domain
BC5CDR

Chem
5K 5K 5K 11M 92.08 77.40

BC5CDR
Disease

5K 5K 5K
15M 94.46 81.34

NCBI
Disease

5K 1K 1K

Table 1: Data Statistics

4.1 Datasets

We evaluate the proposed framework on two dif-
ferent domains: E-commerce query domain and
Biomedical domain. The data statistics are summa-
rized in Table 1.

For E-commerce query NER, we consider two
settings: english queries and multilingual queries.
For English NER, there are 10 different entity types,
while the multilingual NER has 12 different types.
The queries are collected from search queries to a
shopping website. The unlabeled in-domain data
and the weak annotation is obtained by aggregat-
ing user behavior data collected from the shopping
website. We give more details about the weakly
labeled data in Appendix E.

For Biomedical NER, we use three popular
benchmark datasets: BC5CDR-Chem, BC5CDR-
Disease (Wei et al., 2015), and NCBI-Disease
(Doğan et al., 2014). These datasets only contain a
single entity type. We use the pre-processed data
in BIO format from Crichton et al. (2017) follow-
ing BioBERT (Lee et al., 2020) and PubMedBERT
(Gu et al., 2020). We collect unlabeled data from
PubMed 2019 baseline 3, and use the dictionary
lookup and exact string match to generate weak

3Titles and abstract of Biomedical articles:https://
ftp.ncbi.nlm.nih.gov/pubmed/baseline/

labels 4. We only include sentences with at least
one weak entity label.
• Weak Labels Performance. Table 1 also
presents the precision and recall of weak labels
performance on a evaluation golden set. As can
be seen, the weak labels suffer from severe in-
completeness issue. In particular, the recall of E-
commerce query NER is lower than 50. On the
other hand, the weak labels also suffer from label-
ing bias.

4.2 Baselines
We compare NEEDLE with the following base-
lines (All pre-trained models used in the baseline
methods have been continually pre-trained on the
in-domain unlabeled data (i.e., Stage I of NEEDLE)
for fair comparison):
• Supervised Learning Baseline: We directly

fine-tune the pre-trained model on the strongly la-
beled data. For E-commerce query NER, we use
Query-RoBERTa-CRF, which is adapted from the
RoBERTa large model. For E-commerce multi-
lingual query NER, we use Query-mBERT-CRF,
which is adapted from the mBERT. For Biomedi-
cal NER, we use BioBERT-CRF (Lee et al., 2020),
which is adapted from BERT-base.
• Semi-supervised Self-Training (SST): SST use
the model obtained by supervised learning to gen-
erate pseudo labels for the unlabeled data and
then conduct semi-supervised leaning (Wang et al.,
2020; Du et al., 2021).
• Mean-Teacher (Tarvainen and Valpola, 2017),

and VAT, (Miyato et al., 2018)): semi-supervised
baselines.
• Weakly Supervised Learning (WSL): Simply

combining strongly labeled data with weakly la-
beled data (Mann and McCallum, 2010).
•Weighted WSL: WSL with weighted loss, where

weakly labeled samples have a fixed different
weight γ:∑M
m `(Ym, f(Xm; θ))+γ

∑M̃
m `(Ỹ w

m , f(X̃m; θ))

M + M̃
.

We tune the weight γ and present the best result.
• Robust WSL: WSL with mean squared error

loss function, which is robust to label noise (Ghosh
et al., 2017). As the robust loss is not compati-
ble with CRF, we use the token-wise classification
model for the Stage II training.

4We collect a dictionary containing 3016 chemical entities
and 5827 disease entities.

https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/
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• Partial WSL: WSL with non-entity weak labels
excluded from the training loss (Shang et al., 2018).
• BOND (Liang et al., 2020): BOND is a self-

training framework for weakly supervised learning.

Method P R F1
NEEDLE 80.71 80.55 80.63

Supervised Baseline
Query-RoBERTa-CRF 79.27 79.24 79.25

Semi-supervised Baseline
SST 79.61 79.37 79.75
Mean Teacher 79.63 79.30 79.98
VAT 79.71 79.78 79.65

Weakly Supervised Baselines
WSL 73.95 50.20 59.81
Weighted WSL † 78.07 64.41 70.59
Partial WSL 71.95 68.56 70.21
Weighted Partial WSL † 76.28 76.34 76.31
Robust WSL 66.71 42.78 52.13
BOND 76.72 77.97 77.34

Table 2: Main Results on E-commerce English Query
NER: Span-level Precision/Recall/F1. †: we presented
the results of the best weight, see results for all weights
in Appendix B.

4.3 E-commerce NER

We use span-level precision/recall/F1-score as the
evaluation metrics. We present the main results on
English query NER in Table 2.

4.3.1 Main Results
• NEEDLE: NEEDLE outperforms the fully su-

pervised baseline and achieves the best perfor-
mance among all baseline methods;
• Weakly Supervised Baselines: All weakly

supervised baseline methods, including WSL,
Weighted WSL, Partial WSL and Robust WSL,
lead to worse performance than the supervised base-
line. This is consistent with our claim in Section
1. The weakly labeled data can hurt the model
performance if they are not properly handled;
• Semi-supervised Baselines: Semi-supervised

baselines outperforms the supervised baseline and
weakly supervised baselines. This indicates that
if not properly handled, the weak labels are even
worse than the pseudo label generated by model
prediction. In contrast, NEEDLE outperforms
semi-supervised baselines, which indicates that the
weak labels can indeed provide additional knowl-

edge and improve the model performance when
their noise can be suppressed.

4.3.2 Ablation

We study the effectiveness of each component of
NEEDLE. Specifically, we use the following abbre-
viation to denote each component of NEEDLE:
•WLC: Weak label completion.
• NAL: Noise-aware loss function, i.e., Eq.(4).
Since NAL is built on top of WLC, the two compo-
nents need to be used together.
• FT: Final fine-tuning on strongly labeled data
(Stage III).

As can be seen from Table 3, all components
are effective, and they are complementary to each
other.

Method P R F1
NEEDLE w/o FT/WLC/NAL 73.95 50.20 59.81
NEEDLE w/o FT/NAL 75.53 76.45 75.99
NEEDLE w/o FT 75.86 76.56 76.21
NEEDLE w/o WLC/NAL 80.03 79.72 79.87
NEEDLE w/o NAL 80.07 80.36 80.21
NEEDLE 80.71 80.55 80.63

Table 3: Ablation Study on E-commerce English Query
NER.

4.3.3 Extension to Multilingual NER

The proposed framework can be naturally extended
to improve multilingual NER. See details about
the algorithm in Appendix D. The results of E-
commerce Multilingual NER is presented in Ta-
ble 4. As can be seen, the proposed NEEDLE
outperforms other baseline methods in all 5 lan-
guages.

Method En Fr It De Es
NEEDLE 78.17 75.98 79.68 78.83 79.49

w/o NAL 78.00 76.02 79.19 78.58 79.23
w/o WLC/NAL 77.68 75.31 78.22 77.99 78.22
w/o FT 73.88 72.96 75.44 76.51 76.87
w/o FT/NAL 73.87 72.56 75.26 76.11 76.62

Supervised Baseline
Query-mBERT-CRF 77.19 74.82 78.11 77.77 78.11

Semi-supervised Baseline
SST 77.42 75.21 77.82 78.10 78.65

Weakly supervised Baseline
WSL 58.35 59.90 60.98 61.66 63.14

Table 4: E-commerce Multilingual Query NER: Span
Level F1. See other metrics in Appendix D.



4.4 Biomedical NER
We present the main results on Biomedical NER in
Table 5. NEEDLE achieves the best performance
among all comparison methods. We outperform
previous SOTA (Lee et al., 2020; Gu et al., 2020)
by 0.41%, 5.07%, 3.15%, on BC5CDR-chemical,
BC5CDR-disease and NCBI-disease respectively,
in terms of the F1-score. We achieve very signifi-
cant improvement on BC5CDR-disease. We con-
jecture that the weak labels for disease entities are
relatively accurate, since WSL can also improve
the model performance.

Method BC5CDR BC5CDR NCBI
chemical disease disease

NEEDLE 93.74 90.69 92.28
w/o NAL 93.60 90.07 92.11
w/o WLC/NAL 93.08 89.83 91.73
w/o FT 82.03 87.86 89.14
w/o FT/NAL 81.75 87.85 88.86

Supervised Baseline
BioBERT-CRF 92.96 85.23 89.22

Semi-supervised Baseline
SST 93.06 85.56 89.42
Mean Teacher 92.88 88.89 90.31
VAT 93.10 86.62 89.77

Weakly-supervised Baseline
WSL 85.41 88.96 78.84
BOND 86.93 89.06 82.67

Reported F1-scores in Gu et al. (2020).
BERT 89.99 79.92 85.87
BioBERT 92.85 84.70 89.13
SciBERT 92.51 84.70 88.25
PubMedBERT 93.33 85.62 87.82

Reported F1-scores in Nooralahzadeh et al. (2019).
NER-PA-RL† 89.93 -

Table 5: Main Results on Biomedical NER: Span Level
F1-score. We also provide previous SOTA perfor-
mance reported in Gu et al. (2020) and Nooralahzadeh
et al. (2019).. †: NER-PA-RL is a WSL variant us-
ing instance selection. Nooralahzadeh et al. (2019)
only report the averaged F1 of BC5CDR-chemical and
BC5CDR-disease. See other metrics in Appendix C.

4.5 Analysis
Size of Weakly Labeled Data. To demonstrate
that NEEDLE can better exploit the weakly labeled
data, we test the model performance with randomly
sub-sampled weakly labeled data. We plot the F1-
score curve for E-commerce English query NER in
Figure 2a and BC5CDR data in Figure 2b. We find
that NEEDLE gains more benefits from increas-
ing the size of weakly labeled data compared with
other methods (SST and WSL). We also present the
performance of NEEDLE w/o FT in Figure 2c. As

can be seen, although the performance of NEEDLE
w/o FT decreases with more weakly labeled data,
the model can still learn more useful information
and achieves better performance after fine-tuning.
Two Rounds of Stage II Training. Since the
model after the final fine-tuning is better than the
initial model in Stage II, we study whether using
the fine-tuned model for an addition round of Stage
II can further improve the performance of NEE-
DLE. Specifically, after Stage III, we 1) use the
new model to complete the original weak labels;
2) conduct noise-aware continual pre-training over
both strongly and weakly labeled data; 3) fine-tune
the model on strongly labeled data. The results are
presented in Figure 2 (last point of each curve). As
can be seen, NEEDLE can obtain slight improve-
ment using the two rounds of Stage II training. On
the other hand, we also show that SST and NEE-
DLE w/o NAL achieve little improvement using
the second round of training.
Size of Strongly Labeled Data. To demonstrate
that NEEDLE is sample efficient, we test NEEDLE
on randomly sub-sampled strongly labeled data
on E-commerce NER. As we show in Figure 3,
NEEDLE only requires 30% ∼ 50% strongly la-
beled data to achieve the same performance as the
(fully) supervised baseline. We also observe that
NEEDLE achieves more significant improvement
with fewer labeled data: +2.28/3.64 F1-score with
1%/10% labeled data.

4.6 Weak Label Errors in E-commerce NER

Here we study several possible errors of the weak
labels to better understand the weak labels and how
the proposed techniques reduce these errors.
Label Distribution Mismatch. First, we show the
distribution difference between the weak labels and
the strong labels, and demonstrate how the weak
label completion reduces the gap. Specifically, we
compare the entity distribution of the true labels,
weak labels, corrected weak labels and self-training
pseudo labels in Figure 4. As can be seen, the orig-
inal weak labels suffer from severe missing entity
issue (i.e., too many non-entity labels) and dis-
tribution shift (e.g., nearly no Misc labels). On
the other hand, the corrected weak labels suffer
less from the missing entities and distribution shift.
SST pseudo labels are the most similar to the strong
labels, which explains why SST can directly im-
proves the performance.
Systematical Errors. We observe that many er-
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Figure 2: Size of weakly labeled data vs. Performance. We present the performance after the final round of
fine-tuning in (a) and (b). We also compare the performance with and without fine-tuning in (c) using E-commerce
English query NER data. The baselines are Query-RoBERTa-CRF for (a,c) and BioBERT-CRF for (b). “Baseline”:
the baseline here is the fully supervised baseline. We also present the performance after two rounds of Stage II
training at the rightmost point of each curve (“Stage II x2”).

Label Types Querys and Labels
Human Labels zelda amiibo wario amiibo yarn yoshi amiibo amiibo donkey kong

Original Weak Labels zelda amiibo wario amiibo yarn yoshi amiibo amiibo donkey kong
Corrected Weak Labels zelda amiibo wario amiibo yarn yoshi amiibo amiibo donkey kong

Self-Training Labels zelda amiibo wario amiibo yarn yoshi amiibo amiibo donkey kong

Table 6: Query Examples of “amiibo”. Entity Labels: Red: Misc, Blue: Product Line, Green: Color, Black: Non
Entity, Orange: Media Title.
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Figure 3: Performance vs. Size of Strongly Labeled
Data. See detailed numbers in Appendix B.

rors from the weakly labeled data are systemati-
cal errors, which can be easily fixed by the final
fine-tuning stage. For example, “amiibo” is one
Product Line of “nintendo”. The amiibo char-
acters should be defined as Misc type, while the
weak labels are all wrongly annotated as Color.
We list 4 queries and their strong labels and weak
labels in Table 6. Although these errors lead to
worse performance in Stage II, they can be easily
fixed in the final fine-tuning stage. Specifically,
the pre-training first encourages the model to learn
that “xxx amiibo” is a combination of color +
productLine with a large amount of weakly la-
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Figure 4: Entity Distribution

beled data, and then the fine-tuning step corrects
such a pattern to misc + productLine with
a limited amount of data. It is easier than directly
learning the misc + productLine with the
limited strongly labeled data.
Entity BIO Sequence Mismatch in Weak Label
Completion. Another error of the weakly labels is
the mismatched entity BIO sequence in the weak
label completion step, e.g., B-productType fol-
lowed by I-color 5. For English Query NER,

5E.g., Original Weak Labels: B-productType, O,
O; Model Prediction: B-color,I-color,O; Corrected



the proportion of these broken queries is 1.39%.
Removing these samples makes the Stage II per-
form better (F1 score +1.07), while it does not im-
prove the final stage performance (F1 score -0.18).
This experiment indicates that the final fine-tuning
suffices to correct these errors, and we do not need
to strongly exclude these samples from Stage II.
Quantify the Impact of Weak Labels. Here we
examine the impact of weak labels via the lens
of prediction error. We check the errors made by
the model on the validation set. There are 2384
entities are wrongly classified by the initial NER
model. After conducting NEEDLE, 454 of 2384
entities are correctly classified. On the other hand,
the model makes 311 more wrong predictions. No-
tice that not all of them are directly affected by the
weakly labeled data, i.e., some entities are not ob-
served in the weakly labeled data. Some changes
may be only due to the data randomness. If we
exclude the entities which are not observed in the
weakly annotated entities, there are 171 new cor-
rectly classified entities and 93 new wrongly classi-
fied entities, which are affected by the weak labels.
Such a ratio 171/93 = 1.84 >> 1 justifies that
the advantage of NAL significantly out-weights the
disadvantage of the noise of weak labels.

5 Discussion and Conclusion

Our work is closely related to fully weakly super-
vised NER. Most of the previous works only focus
on weak supervision without strongly labeled data
(Shang et al., 2018; Lan et al., 2020a; Liang et al.,
2020). However, the gap between a fully weakly su-
pervised model and a fully supervised model is usu-
ally huge. For example, a fully supervised model
can outperform a weakly supervised model (Au-
toNER, Shang et al. (2018)) with only 300 articles.
Such a huge gap makes fully weakly supervised
NER not practical in real-world applications.

Our work is also relevant to semi-supervised
learning, where the training data is only par-
tially labeled. There have been many semi-
supervised learning methods, including the pop-
ular self-training methods used in our experiments
for comparison (Yarowsky, 1995; Rosenberg et al.,
2005; Tarvainen and Valpola, 2017; Miyato et al.,
2018; Meng et al., 2018; Clark et al., 2018; Yu
et al., 2021). Different from weak supervision,
these semi-supervised learning methods usually
has a partial set of labeled data. They rely on the

Weak Labels: B-productType, I-color, O.

labeled data to train a sufficiently accurate model.
The unlabeled data are usually used for inducing
certain regularization to further improve the gen-
eralization performance. Existing semi-supervised
learning methods such as self-training doesn’t lever-
age the knowledge from weak supervision and can
only marginally improve the performance.

Different from previous studies on fully weakly
supervised NER, we identify an important research
question on weak supervision: the weakly labeled
data, when simply combined with the strongly la-
beled data during training, can degrade the model
performance. To address this issue, we propose a
new computational framework named NEEDLE,
which effectively suppresses the extensive noise
in the weak labeled data, and learns from both
strongly labeled data and weakly labeled data. Our
proposed framework bridges the supervised NER
and weakly supervised NER, and harnesses the
power of weak supervision in a principled man-
ner. Note that, NEEDLE is complementary to
fully weakly supervised / semi-supervised learning.
One potential future direction is to combine NEE-
DLE with other fully weakly supervised / semi-
supervised learning techniques to further improve
the performance, e.g., contrastive regularization
(Yu et al., 2021).

Broader Impact

This paper studies NER with small strongly labeled
and large weakly labeled data. Our investigation
neither introduces any social/ethical bias to the
model nor amplifies any bias in the data. We do not
foresee any direct social consequences or ethical
issues.
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ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, et al. 2019. Huggingface’s transformers: State-
of-the-art natural language processing. ArXiv, pages
arXiv–1910.

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In 33rd
Annual Meeting of the Association for Computa-
tional Linguistics, pages 189–196, Cambridge, Mas-
sachusetts, USA. Association for Computational
Linguistics.

Yue Yu, Simiao Zuo, Haoming Jiang, Wendi Ren, Tuo
Zhao, and Chao Zhang. 2021. Fine-tuning pre-
trained language model with weak supervision: A
contrastive-regularized self-training approach. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1063–1077, Online. Association for Compu-
tational Linguistics.

Bianca Zadrozny and Charles Elkan. 2001. Obtain-
ing calibrated probability estimates from decision
trees and naive bayesian classifiers. In Proceed-
ings of the Eighteenth International Conference on
Machine Learning (ICML 2001), Williams College,
Williamstown, MA, USA, June 28 - July 1, 2001,
pages 609–616. Morgan Kaufmann.

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Aligning books and movies:
Towards story-like visual explanations by watching
movies and reading books. In 2015 IEEE Interna-
tional Conference on Computer Vision, ICCV 2015,
Santiago, Chile, December 7-13, 2015, pages 19–27.
IEEE Computer Society.

https://doi.org/10.1145/3269206.3271737
https://doi.org/10.1145/3269206.3271737
https://doi.org/10.18653/v1/D19-6125
https://doi.org/10.18653/v1/D19-6125
https://doi.org/10.18653/v1/D18-1230
https://doi.org/10.18653/v1/D18-1230
https://proceedings.neurips.cc/paper/2017/hash/68053af2923e00204c3ca7c6a3150cf7-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/68053af2923e00204c3ca7c6a3150cf7-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/68053af2923e00204c3ca7c6a3150cf7-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/68053af2923e00204c3ca7c6a3150cf7-Abstract.html
https://doi.org/10.3115/981658.981684
https://doi.org/10.3115/981658.981684
https://www.aclweb.org/anthology/2021.naacl-main.84
https://www.aclweb.org/anthology/2021.naacl-main.84
https://www.aclweb.org/anthology/2021.naacl-main.84
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11


A Estimation of Weak Label Confidence

Here we describe how do we estimate the confidence of weak labels — P̂ (Ỹc = Ỹ|X̃). Notice that,
the corrected weak labels Ỹc in NEEDLE consists of two parts: original weak labels Ỹw and model
prediction Ỹp. So we estimate the confidence of corrected weak labels by the confidence of these two
parts using a simple linear combination:

P̂ (Ỹc = Ỹ|X̃)=
#{Matched Tokens}
#{Total Tokens}

P̂ (Ỹw = Ỹ|X̃)+(1− #{Matched Tokens}
#{Total Tokens}

)P̂ (Ỹp = Ỹ|X̃)

The weight of such linear combination comes from the rule of the weak label completion procedure.
Recall that, we use the original weak labels for all matched tokens in original weakly-supervised data,
while we use the model prediction for other tokens.

We first assume the confidence of weak labels are high, i.e. P̂ (Ỹw = Ỹ|X̃) = 1, as there is less
ambiguity in the domain-specific dictionary and matching process.

The label prediction Ỹp of CRF model is based on Viterbi decoding score

Ỹp = argmax
Y

s(Y) = Decode(Y, f(X̃; θ))

The confidence of Ỹp , i.e., P̂ (Ỹp = Ỹ|X̃) can be estimated via histogram binning (Zadrozny and Elkan,
2001), which is widely used in model calibration (Kong et al., 2020). Specifically, we categorize samples
into bins based on the decoding score s(Ỹp). For each bin we estimate the confidence using a validation
set (independent of the final evaluation set). For a new sample, we first calculate the decoding score, and
estimate the prediction confidence by the confidence of the corresponding bin in the histogram. Figure 5
illustrates an example of histogram binning. As can be seen, the decoding score has a strong correlation
with the prediction confidence.
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Figure 5: Decoding Score vs. Accuracy/Confidence

Finally, we enforce a smoothing when estimating the confidence. Specifically, we always make a
conservative estimation by a post-processing:

P (Ỹc = Ỹ|X̃) = min(0.95, P (Ỹc = Ỹ|X̃))

We enforce such a smoothing to count any potential errors (e.g., inaccurate original weak labels) and
prevent model from overfitting. The smoothing parameter is fixed as 0.95 throughout the experiments.



B Additional Experimental Results for E-commerce NER

We also present Token/Span/Query level Accuracy, as they are commonly used in E-commerce NER tasks.

Method Span P/R/F1 T/S/Q Accu.
RoBERTa (Supervised Baseline) 78.51/78.54/78.54 85.51/79.14/66.90
Weighted WSL
weight = 0.5 75.38/52.94/62.20 61.07/52.61/37.32
weight = 0.1 77.31/57.85/66.18 65.65/57.70/43.83
weight = 0.01 78.07/64.41/70.59 71.75/64.43/52.52

Weighted Partial WSL
weight = 0.5 72.94/71.77/72.35 81.10/72.53/59.14
weight = 0.1 75.24/74.68/74.96 83.08/75.36/62.50
weight = 0.01 76.28/76.34/76.31 84.14/76.94/63.91

Table 7: Performance of BERT (Supervised Baseline), Weighted WSL & Weighted Partial WSL on E-commerce
English Query NER

B.1 Performance vs. Strongly Labeled Data

Method Span P/R/F1 T/S/Q Accu.
(1%) Query-RoBERTa-CRF (30 epochs) 68.69/70.59/69.63 79.03/71.25/54.36
(10%) Query-RoBERTa-CRF (3 epochs) 71.69/73.72/72.69 81.90/74.26/58.36
(20%) Query-RoBERTa-CRF (3 epochs) 75.16/75.90/75.53 83.65/76.43/62.42
(50%) Query-RoBERTa-CRF (3 epochs) 76.95/77.90/77.42 84.88/78.41/64.96
(1%) NEEDLE 71.20/72.64/71.91 80.74/73.26/57.40
(10%) NEEDLE 76.25/76.15/76.20 84.09/76.67/63.79
(20%) NEEDLE 77.93/77.75/77.84 85.06/78.28/65.88
(50%) NEEDLE 79.12/79.23/79.18 85.92/79.73/67.77

Table 8: Performance vs. Size of Strongly Labeled Data on E-commerce English Query NER

C Additional Experimental Results for Biomedical NER

Method BC5CDR-chem BC5CDR-disease NCBI-disease
Reported F1-scores of Baselines (Gu et al., 2020). Previous SOTA: PubMedBERT/BioBERT.
BERT -/-/89.99 -/-/79.92 -/-/85.87
BioBERT -/-/92.85 -/-/84.70 -/-/89.13
SciBERT -/-/92.51 -/-/84.70 -/-/88.25
PubMedBERT -/-/93.33 -/-/85.62 -/-/87.82
Re-implemented Baselines
BERT 88.55/90.49/89.51 77.54/81.87/79.64 83.50/88.54/85.94
BERT-CRF 88.59/91.44/89.99 78.70/81.53/80.09 85.33/86.67/85.99
BioBERT 92.59/93.11/92.85 82.36/86.66/84.45 86.75/90.83/88.74
BioBERT-CRF 92.64/93.28/92.96 83.73/86.80/85.23 87.18/91.35/89.22
Based on BioBERT and CRF layer
SST 92.40/93.74/93.06 84.01/87.18/85.56 87.00/91.98/89.42
WSL 82.17/88.91/85.41 90.72/87.27/88.96 87.14/71.98/78.84
NEEDLE w/o WLC/NAL 92.85/93.31/93.08 91.37/88.34/89.83 91.68/91.77/91.73
NEEDLE w/o FT/NAL 79.29/84.38/81.75 82.44/94.03/87.85 87.17/90.62/88.86
NEEDLE w/o NAL 92.93/94.28/93.60 86.73/93.69/90.07 91.82/92.40/92.11
NEEDLE w/o FT 79.87/84.31/82.03 82.39/94.12/87.86 87.31/91.04/89.14
NEEDLE 92.89/94.60/93.74 87.99/93.56/90.69 91.76/92.81/92.28

Table 9: Main Results on Biomedical NER: Span Precision/Recall/F1. The Best performance is bold, and the
results that are close to best performance (≤ 0.2%) are also bold.



D Extension: Multilingual NER

The proposed framework can be extended to improve multilingual NER. For Stage I and Stage II, we use
data from other languages to learn domain-specific knowledge and task-related knowledge. In the final
fine-tuning stage, we use the data from the target language, which allows us to adapt the model to the
target language and obtain a better performance on the target language. The framework is summarized in
Figure 6. The results of Multilingual Query NER are presented in Table 10. As can be seen, NEEDLE
outperforms baseline methods.

Figure 6: Three-Stage NEEDLE for Multilingual NER

Method (Span P/R/F1) En Fr It De Es

mBERT-CRF (Single) 76.14/76.04/76.09 72.87/73.00/72.93 76.95/77.67/77.31 74.74/78.08/76.37 76.34/76.75/76.54
mBERT-CRF 76.38/76.25/76.31 74.69/75.06/74.87 77.82/77.60/77.71 75.93/78.52/77.20 78.18/77.57/77.87
Query-mBERT-CRF 77.21/77.18/77.19 74.59/75.05/74.82 78.22/78.01/78.11 76.46/79.12/77.77 78.50/77.73/78.11

Based on Query-mBERT and CRF layer
SST 77.52/77.33/77.42 75.15/75.28/75.21 78.00/77.64/77.82 76.82/79.43/78.10 79.14/78.17/78.65
WSL 74.20/48.09/58.35 71.17/51.71/59.90 74.72/51.51/60.98 74.34/52.68/61.66 76.32/53.85/63.14
NEEDLE w/o WLC/NAL 77.89/77.47/77.68 75.28/75.35/75.31 78.17/78.28/78.22 76.68/79.33/77.99 78.29/78.14/78.22
NEEDLE w/o FT/NAL 72.73/75.06/73.87 72.00/73.12/72.56 75.19/75.34/75.26 74.65/77.63/76.11 77.07/76.18/76.62
NEEDLE w/o NAL 78.27/77.74/78.00 76.09/75.95/76.02 79.14/79.25/79.19 77.55/79.63/78.58 79.60/78.86/79.23
NEEDLE w/o FT 72.79/75.01/73.88 72.46/73.46/72.96 75.39/75.50/75.44 75.09/77.98/76.51 77.46/76.29/76.87
NEEDLE 78.40/77.95/78.17 76.05/75.91/75.98 79.61/79.76/79.68 77.79/79.90/78.83 79.85/79.13/79.49

Method (T/S/Q Accu.) En Fr It De Es

mBERT-CRF (Single) 83.26/76.80/61.68 80.27/72.91/57.48 83.70/78.13/60.75 79.53/76.38/60.72 83.58/77.56/59.64
mBERT-CRF 83.37/76.97/62.21 81.43/74.92/60.35 84.31/78.06/60.65 80.48/76.82/62.47 84.94/78.23/61.44
Query-mBERT-CRF 84.15/77.85/63.44 81.36/74.91/60.17 84.83/78.46/61.26 80.93/77.40/62.81 85.20/78.27/62.12

Based on Query-mBERT and CRF layer
SST 84.18/78.02/63.57 81.66/75.12/60.92 84.45/78.13/60.89 81.26/77.72/63.61 85.35/78.56/62.90
WSL 54.40/47.43/28.97 59.11/51.08/32.85 59.79/50.59/30.75 56.16/51.16/33.59 61.36/53.29/32.48
NEEDLE w/o WLC/NAL 84.42/78.12/64.43 81.65/75.24/60.74 84.76/78.65/61.77 81.32/77.59/63.37 84.82/78.84/61.95
NEEDLE w/o NAL/FT 83.46/75.80/57.93 81.20/73.04/56.90 83.48/75.97/57.22 80.31/76.00/60.79 83.90/76.80/59.30
NEEDLE w/o NAL 84.63/78.42/64.76 82.34/75.83/61.91 85.34/79.63/63.17 81.68/77.90/64.34 85.64/79.48/63.41
NEEDLE w/o FT 83.50/75.76/58.01 80.92/73.38/57.34 83.45/76.03/57.39 80.48/76.31/61.22 84.10/76.97/60.12
NEEDLE 84.74/78.59/64.86 82.14/75.80/61.96 85.65/80.12/63.71 81.79/78.15/64.84 86.00/79.80/64.03

Table 10: E-commerce Multilingual Query NER: Span Precision/Recall/F1 and Token/Span/Query level Accu-
racy. The Best performance is bold, and the results that are close to best performance (≤ 0.2%) are also bold.
‘mBERT-CRF (Single)’: fine-tune mBERT with strongly labeled data from the target language. ‘w/ Fine-tune’: the
additional fine-tuning stage only use strongly labeled data from the target language. For other methods, we use
multilingual human-annotated data.



E Detailed of Weakly Labeled Datasets

E.1 Weak Labels for Biomedical NER Data
Unlabeled Data

The large-scale unlabeled data is obtained from titles and abstracts of Biomedical articles.
Weak Label Generation

The weak annotation is generated by dictionary lookup and exact string match.

Figure 7: Illustration of Weak Label Generation Process for Biomedical NER.

E.2 Weak Labels for E-commerce query NER Data
Unlabeled Data

The unlabeled in-domain data is obtained by aggregated anonymized user behavior data collected from
the shopping website.
Weak Label Generation

The weak annotation is obtained by aggregated anonymized user behavior data collected from the
shopping website.
Step 1. For each query, we aggregate the user click behavior data and find the most clicked product.
Step 2. Identify product attributes in the product knowledge base by product ID.
Step 3. We match spans of the query with product attribute. If a match is found, we can annotate the span
by the attribute type.

Example:
• Query: sketchers women memory foam trainers
•Most Clicked Product: Product ID B014GNJNBI
• Product Manufacturer: sketchers
• String Match Results: sketchers (brand) women memory foam trainers

Figure 8: Illustration of Weak Label Generation Process for E-commerce NER.


